
J Glob Optim (2008) 42:423–442
DOI 10.1007/s10898-008-9303-0

A method for approximating pairwise comparison
matrices by consistent matrices

János Fülöp

Received: 11 March 2008 / Accepted: 13 March 2008 / Published online: 17 June 2008
© Springer Science+Business Media, LLC. 2008

Abstract In several methods of multiattribute decision making, pairwise comparison
matrices are applied to derive implicit weights for a given set of decision alternatives. A
class of the approaches is based on the approximation of the pairwise comparison matrix by
a consistent matrix. In the paper this approximation problem is considered in the least-squares
sense. In general, the problem is nonconvex and difficult to solve, since it may have several
local optima. In the paper the classic logarithmic transformation is applied and the problem
is transcribed into the form of a separable programming problem based on a univariate func-
tion with special properties. We give sufficient conditions of the convexity of the objective
function over the feasible set. If such a sufficient condition holds, the global optimum of the
original problem can be obtained by local search, as well. For the general case, we propose
a branch-and-bound method. Computational experiments are also presented.

Keywords Pairwise comparison matrix · Consistent matrix · Nonconvex programming ·
Branch-and-bound

1 Introduction

In the paper we consider the following optimization problem:

min
n∑

i=1

n∑

j=1

(
ai j − wi

w j

)2

s.t.
n∑

i=1

wi = 1, (1)

wi > 0, i = 1, . . . , n,

J. Fülöp (B)
Laboratory of Operations Research and Decision Systems, Computer and Automation Research Institute,
Hungarian Academy of Sciences, Kende u. 13-17, 1111 Budapest, Hungary
e-mail: fulop@sztaki.hu

123

424 J Glob Optim (2008) 42:423–442

where A = [ai j] is an n × n pairwise comparison matrix, i.e.

ai j > 0 and ai j = 1

a ji
, i, j = 1, . . . , n. (2)

Pairwise comparison matrices play an important role in multiattribute decision-making, they
are applied to derive priorities or implicit weights for a given set of decision alternatives. Con-
sider, as an example, the prioritization of n alternatives. The priorities represent the relative
importance of the alternatives. In the approach based on pairwise comparisons, comparing
any two alternatives i and j , the decision-maker assigns the value ai j which represents a
judgement concerning the relative importance of the preference of alternative i over alter-
native j . If alternative i is preferred to alternative j , then ai j > 1. The positivity property
ai j > 0 and the reciprocity property ai j = 1/a ji of (2) are evident assumptions on the
pairwise comparisons.

A pairwise comparison matrix A is consistent if

ai j a jk = aik, i, j, k = 1, . . . , n.

It can be shown, see e.g. Saaty (1980), that a pairwise comparison matrix A is consistent if
and only if there exists a positive n-vector w such that

ai j = wi/w j , i, j = 1, . . . , n.

For a consistent pairwise comparison matrix A, the values wi serve as priorities or implicit
weights of the importance of alternatives.

In practice, the decision-maker’s evaluations ai j are frequently not consistent. In the case
of an inconsistent pairwise comparison matrix A, the evaluations ai j can be considered as
perturbations of the appropriate elements of an n× n consistent pairwise comparison matrix
W = [wi j], where

wi j = wi/w j , i, j = 1, . . . , n,

and w = (w1, . . . , wn)T is the vector of the priority weights.
Several approaches exist regarding how to derive a suitable vector w from an inconsistent

pairwise comparison matrix A. Saaty (1977) proposed the Eigenvector Method in which w is
the principal eigenvector of A. Another class of approaches is based on optimization methods
and proposes different ways for minimizing the difference between the matrices A and W .

In the Least Squares Method presented by Chu et al. (1979), the matrix A is approxi-
mated by W in the least-squares sense. This optimization problem can be written in the form
(1) where the constraint

∑n
i=1 wi = 1 serves for the normalization of the vector w. The

objective function of (1) is the Frobenius norm of the difference between the matrices A and
W . Problem (1) is a difficult nonconvex optimization problem with several possible local
optima, moreover, with possible multiple isolated global optimal solutions (Jensen 1983,
1984). Most of the methods proposed for solving (1) aim at finding local optimal solutions.
Chu (1997), and Farkas and Rózsa (2004) apply local search techniques of nonlinear pro-
gramming. Bozóki (2003, 2006), and Bozóki and Lewis (2005) transcribe (1) into the form
of a multivariate polynomial system, and apply resultant and homothopy methods for finding
the roots. Farkas (2004), Farkas and Rózsa (2001, 2004), and Farkas et al. (2003) use some
techniques of linear algebra, and deal with questions of non-uniqueness and data perturba-
tion, as well. Carrizosa and Messine (2007) propose an interval method for finding global
optimal solutions of (1).

Some authors state that problem (1) has no special tractable form and is difficult to solve,
see Chu et al. (1979), Golany and Kress (1993), Mikhailov (2000), Choo and Wedley (2004).

123

J Glob Optim (2008) 42:423–442 425

In order to elude the difficulties caused by the possible nonconvexity of (1), several other,
more easily solvable problem forms are proposed to derive priority weights from an incon-
sistent pairwise comparison matrix. The Weighted Least Squares Method (Chu et al. 1979;
Blankmeyer 1987) applies a convex quadratic optimization problem whose unique optimal
solution is obtainable by solving a set of linear equations. The Logarithmic Least Squares
Method (De Jong 1984; Crawford and Williams 1985) is based on an optimization problem
whose unique optimal solution is the geometric mean of the rows of matrix A. The Goal Pro-
gramming Method (Bryson 1995), the Chi Square Method (Jensen 1984), the Singular Value
Decomposition (Gass and Rapcsák 2004), and the idea of using Support Vector Machines
(Carrizosa 2006) are further approaches.

In the paper we focus on problem (1) and its equivalent forms. In Sect. 2 the classic loga-
rithmic transformation is applied and the problem is transcribed into the form of a separable
programming problem based on a class of univariate functions. Some special properties of
these univariate functions are investigated, too. In Sect. 3 we give sufficient conditions for
the global optimality of a local optimal solution. When such a sufficient condition holds,
the global optimum of (1) can be obtained by local search. In Sect. 4 we propose a branch-
and-bound method for solving (1) in the general case. Some computational experiments are
presented in Sect. 5.

2 Transforming the Least Squares problem into a separable programming form

Instead of the normalization constraint
∑n

i=1 wi = 1 used in (1), we apply the normalization
wn = 1, and write (1) into the equivalent form

min
n∑

i=1

n∑

j=1

(
ai j − wi

w j

)2

s.t. wn = 1, (3)

wi > 0, i = 1, . . . , n − 1.

Then, using the classic logarithmic transformation

ti = log wi , i = 1, . . . , n, (4)

and the reciprocity property (2), problem (3) can be written into the equivalent form of the
unconstrained problem

min
n−1∑
i=1

((
eti − ain

)2 + (
e−ti − 1/ain

)2
)
+

n−2∑
i=1

n−1∑
j=i+1

((
eti−t j − ai j

)2 + (
e−ti+t j − 1/ai j

)2
)

.

(5)

The logarithmic transformation (4) was applied by Chu (1997), as well. In general, nonlin-
ear coordinate transformations like (4) are useful tools of convexification in optimization
(Rapcsák 2001). By introducing additional variables ti j , i = 1, . . . , n − 2, j = i +
1, . . . , n−1, (5) can be transcribed into the form of a separable programming problem:

123

426 J Glob Optim (2008) 42:423–442

min
n−1∑

i=1

((
eti − ain

)2 + (
e−ti − 1/ain

)2
)
+

n−2∑

i=1

n−1∑

j=i+1

((
eti j − ai j

)2 + (
e−ti j − 1/ai j

)2
)

(6)

s.t. ti − t j − ti j = 0, i = 1, . . . , n − 2, j = i + 1, . . . , n − 1.

Each of the univariate summands appearing in the objective function of (6) is an instance of
the class of the univariate functions

fa(t) = (
et − a

)2 + (
e−t − 1/a

)2
(7)

depending on the real parameter a. Consequently,

min
n−1∑
i=1

fain (ti)+
n−2∑
i=1

n−1∑
j=i+1

fai j (ti j)

s.t. ti − t j − ti j = 0, i = 1, . . . , n − 2, j = i + 1, . . . , n − 1
(8)

is an equivalent form of (6).
Although problem (5) is unconstrained and the feasible region of (8) is unbounded, suitable

lower and upper bounds can easily be determined for the variables. These bounds are useful
when applying, e.g., branch-and-bound techniques. Let γ be the value of the objective func-
tion of (5) at a point (t̄1, . . . , t̄n−1). Then, from (eti − ain)2 ≤ γ , we get ti ≤ log(

√
γ + ain).

Determining the lower and upper bounds

li = − log
(√

γ + 1/ain
)
, i = 1, . . . , n − 1,

ui = log
(√

γ + ain
)
, i = 1, . . . , n − 1,

li j = − log
(√

γ + 1/ai j
)
, i = 1, . . . , n − 2, j = i + 1, . . . , n − 1,

ui j = log
(√

γ + ai j
)
, i = 1, . . . , n − 2, j = i + 1, . . . , n − 1

(9)

in a similar way, and adding the bound constraints on the variables to (8), we get

min
n−1∑
i=1

fain (ti)+
n−2∑
i=1

n−1∑
j=i+1

fai j (ti j)

s.t. ti − t j = ti j , i = 1, . . . , n − 2, j = i + 1, . . . , n − 1,

li ≤ ti ≤ ui , i = 1, . . . , n − 1,

li j ≤ ti j ≤ ui j , i = 1, . . . , n − 2, j = i + 1, . . . , n − 1.

(10)

It is clear that the bound constraints added (10) do not exclude any feasible solution of (8)
with objective function value less than or equal to γ . An equivalent form of (10), without the
additional variables ti j , can be written as

min
n−1∑
i=1

fain (ti)+
n−2∑
i=1

n−1∑
j=i+1

fai j (ti − t j)

s.t. li ≤ ti ≤ ui , i = 1, . . . , n − 1,

li j ≤ ti−t j ≤ ui j , i = 1, . . . , n − 2, j = i + 1, . . . , n − 1.

(11)

The function fa(t) of (7) plays an important role also in the equivalent forms above,
therefore, its main properties are reviewed below.

It is clear that for any a �= 0, we have

fa(t) = f1/a(−t), (12)

123

J Glob Optim (2008) 42:423–442 427

i.e., the graph of f1/a can be obtained by reflecting the graph of fa through the vertical axis.
By using simple calculus, it is easy to see that for any a > 0, we have

fa(t) ≥ 0 for all t,

min fa(t) = 0,

arg min fa(t) = {log a},
f ′a(log a) = 0,

f ′a(t) < 0 for all t < log a,

f ′a(t) > 0 for all t > log a.

Proposition 1 Let

ā =
(

123+ 55
√

5

2

)1/4

. (13)

Then for any a with

1/ā ≤ a ≤ ā, (14)

function fa is strictly convex. For any

0 < a < 1/ā or ā < a, (15)

function fa has two inflexion points t (1)
a < t (2)

a , fa is strictly concave on [t (1)
a , t (2)

a] and
strictly convex on (−∞, t (1)

a] and [t (2)
a ,∞).

Proof From (7), we have

f ′′a (t) = 2[2e2t − aet + 2e−2t − (1/a)e−t].
The sign of f ′′a (t) determines the convex and concave parts of fa . Consider the quartic
polynomial

pa(x) = 2x4 − ax3 − (1/a)x + 2. (16)

By substituting

x = et , (17)

we get

f ′′a (t) = 2

x2 pa(x). (18)

Since x > 0, the sign of f ′′a (t) is the same as the sign of pa(x).
The number of changes in sign in the sequence of the coefficients of polynomial pa(x)

is 2 (zero coefficients are not counted). According to Descartes’ rule of signs (Kurosh 1972,
p. 247), the number of positive roots of pa(x) is 0 or 2 (counting with multiplicities).

It is easy to see that limx→0 pa(x) = 2 and limx→∞ pa(x) = ∞. Moreover, if 1 ≤ a ≤ x ,
then pa(x) ≥ 2. To prove it, rearrange (16) as pa(x) = (x4 − ax3) + (x4 − (1/a)x) + 2.

Since x4 ≥ ax3 and x4 ≥ x ≥ (1/a)x , we obtain pa(x) ≥ 2.
Assume now that 0 < x ≤ a ≤ 1. Then pa(x) > 0. Now, rearrange (16) as pa(x) =

2x4 + (1− ax3)+ (1− (1/a)x). Since 1 ≥ ax3 and 1 ≥ (1/a)x , we obtain pa(x) > 0.

123

428 J Glob Optim (2008) 42:423–442

As a consequence of the computations above, we obtain that p1(x) > 0 for all x > 0.

Naturally, for any fixed x > 0, there exists an a such that pa(x) < 0; we have to choose an
a large enough or an a > 0 small enough.

Write (16) as the function of both x and a:

P(a, x) = 2x4 − ax3 − (1/a)x + 2.

Assume that for an x > 0 and a > 1, we have P(a, x) ≤ 0. We know that x < a holds in
this case, hence

0 ≥ 2x4 − ax3 − (1/a)x + 2 > 2x4 − ax3 − (1/a)x + (2/a)x > −ax3 + (1/a)x .

From 0 > −ax3 + (1/a)x and a > 0, we have

−x3 + (1/a2)x = ∂

∂a
P(a, x) < 0.

From the computations above, it follows that if for an a > 1 the polynomial pa(x) has a
positive root, then pâ(x) has two positive roots for any â > a.

From (16), we get p′a(x) = 8x3 − 3ax2 − (1/a). Taking limx→0 p′a(x) = −(1/a) < 0
and limx→∞ p′a(x) = ∞, as well as Decartes’s rule of signs into consideration, it follows
that for any a > 0, p′a(x) = 0 has a unique solution for x > 0 and it is also the optimal
solution of

min {pa(x) | x > 0}. (19)

Now, we determine the unique a > 1 for which the optimal value of (19) is 0. This means
that we have to solve the system

pa(x) = 0, p′a(x) = 0,

i.e.,

2x4 − ax3 − (1/a)x + 2 = 0,

8x3 − 3ax2 − (1/a) = 0.
(20)

A polynomial system equivalent to (20) is

2ax4 − a2x3 − x + 2a = 0,

8ax3 − 3a2x2 − 1 = 0.
(21)

By using the resultant method and eliminating x from (21) (see Kurosh (1972, p. 331) for
more details) (21) can be reduced to solving

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2a −a2 0 −1 2a 0 0
0 2a −a2 0 −1 2a 0
0 0 2a −a2 0 −1 2a

8a −3a2 0 −1 0 0 0
0 8a −3a2 0 −1 0 0
0 0 8a −3a2 0 −1 0
0 0 0 8a −3a2 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (22)

After some computations, (22) can be transformed into the form

a8 − 123a4 + 1 = 0. (23)

123

J Glob Optim (2008) 42:423–442 429

From (23), we have

a4
1,2 =

123±√1232 − 4

2
= 123±√15125

2
= 123± 55

√
5

2
.

The positive roots are

a1,2 =
(

123± 55
√

5

2

)1/4

,

but a1,2 ≥ 1 holds only for ā defined in (13). The approximate value of ā is 3.330191.
Similar investigations can also be performed for a < 1 directly, but it is simpler to derive

the results from (12) and use the findings for a > 1.
For any 0 < a < 1/ā or ā < a, the quartic polynomial pa(x) of (16) has two positive

roots x (1)
a < x (2)

a , and they can easily be computed (see e.g. Kurosh, 1972). Furthermore,
pa(x) < 0 for all x ∈ (x (1)

a , x (2)
a) and pa(x) > 0 for all x ∈ (0, x (1)

a) ∪ (x (2)
a ,∞). Let

t (i)a = log x (i)
a , i = 1, 2. Then, according to (17) and (18), the second statement of the prop-

osition follows immediately.
�

The relation of function fa(t) to some quartic polynomials has already been exploited
in the proof of Proposition 1. This relation can also be applied to compute lower and upper
bounds better that those in (9). Again, as in (9), let γ be the value of the objective function
of (5) at a feasible point. We can assume that γ > 0 since in case of γ = 0 we are done: γ

is the optimal value of (1), moreover, matrix A is consistent. Consider the equation

fai j (t) = γ (24)

for each i = 1, . . . , n − 1, j = i + 1, . . . , n. From the properties of fa(t), it follows that
each equation (24) has exactly two solutions li j and ui j such that li j < log ai j < ui j , and
fai j (t) ≤ γ if and only if t ∈ [li j , ui j]. The solutions can easily be obtained: after substituting
x = et and rearranging, we have an equivalent form of (24),

x4 − 2ai j x3 + (a2
i j +

1

a2
i j

− γ)x2 − 2

ai j
x + 1 = 0 (25)

that can be solved as a quartic polinomial equation. Thereafter, the solutions of (24) can be
obtained from the positive roots of (25).

It is easy to see that the lower and upper bounds li = lin, ui = uin, i = 1, . . . , n − 1 and
li j , ui j , i = 1, . . . , n − 2, j = i + 1, . . . , n − 1, are better than those determined by (9).
Namely, the feasible set of (11) with the bounds from (24) is a proper subset of the feasible
set with the bounds from (9).

3 Sufficient conditions for the global optimality of a local optimal solution

Let

F(t1, . . . , tn−1) =
n−1∑

i=1

fain (ti)+
n−2∑

i=1

n−1∑

j=i+1

fai j (ti − t j). (26)

Function F is the objective function of problems (5) and (11), and plays an important role
in this section. The value ā from (13), approximately 3.330191, is also used here.

123

430 J Glob Optim (2008) 42:423–442

Proposition 2 If

0 < ai j ≤ ā, i, j = 1, . . . , n, (27)

where ā is from (13), then problem (1) has a unique local (thus global) optimal solution, the
objective function of (11) is strictly convex and has a unique local (thus global) minimizer
point.

Proof If (27) holds, then according to Proposition 1, each univariate function in (26) is
strictly convex. The first part of (26), i.e.,

n−1∑

i=1

fain (ti) (28)

is strictly convex in (t1, . . . , tn−1), and F(t1, . . . , tn−1) remains strictly convex after adding
the second part

n−2∑

i=1

n−1∑

j=i+1

fai j (ti − t j)

of convex functions to (28). Since (26) is strictly convex and its lower level sets are compact
(see (9)), problem (5) has a unique local thus global optimal solution. The convexity of the
objective function does not necessarily hold for the original problems in form (1) and (3), but
the nonlinear coordinate transformation (4) and its inverse assure the one-to-one correspon-
dance between the local optimal solutions of the problems in the spaces of (w1, . . . , wn) and
(t1, . . . , tn−1), respectively. The statement for problem (11) follows evidently.
�
Corollary 1 If (27) holds, then the equivalent problems (1), (3), (5), (6), (8), (10) and (11)
can be solved by local search techniques starting from any feasible point.

�
Relation (27) is a sufficient but not necessary condition of the convexity of F . It can

happen that the strict convexity of several univariate functions in (26) compensates small
nonconvexities of some other univariate functions in (26), and hence F is convex. We need
the Hessian of F and the quadratic form with it for such investigations. From (26), we obtain
that

(x1, . . . , xn−1)∇2 F(t1, . . . , tn−1)(x1, . . . , xn−1)
T

=
n−1∑
i=1

xi∇2 fain (ti)xi +
n−2∑
i=1

n−1∑
j=i+1

(xi , x j)∇2 f̄ai j (ti , t j)(xi , x j)
T (29)

for any (n − 1)-vector (x1, . . . , xn−1), where

f̄ai j (ti , t j) = fai j (ti − t j). (30)

Equation (29) means that the quadratic form with the Hessian of F can be obtained from
the quadratic forms with the 1 × 1 and 2 × 2 Hessians of the respective functions on the
right-hand-side of (26). Based upon this property, we construct a quadratic matrix such that
the quadratic form generated by this matrix underestimates the quadratic form generated by
∇2 F at any feasible point of (11).

Clearly, ∇2 fain (ti) = f ′′ain
(ti). Let

µi = min{ f ′′ain
(ti) | li ≤ ti ≤ ui }. (31)

123

J Glob Optim (2008) 42:423–442 431

Then,

xi∇2 fain (ti)xi ≥ µi x2
i (32)

for all ti ∈ [li , ui] and for any xi . Applying a technique of substitution similar to the one
used in Proposition 1, the computation of µi can be reduced to finding the positive roots of
a quartic polynomial. Namely,

f ′′′a (t) = 2[4e2t − aet − 4e−2t + (1/a)e−t].
Substituting x = et again, we get

f ′′′a (t) = 2

x2 p̄a(x),

where

p̄a(x) = 4x4 − ax3 + (1/a)x − 4.

By determinig the positive roots of the quartic polynomial p̄a(x), the real roots of f ′′′a (t)
can also be obtained. Here again, finite methods can be used to solve the quartic polynomial
equations (see e.g. Kurosh 1972).

Now, if the real roots of f ′′′ain
(t) are known, then taking the value of f ′′ain

(t) at the roots
lying in [li , ui], and taking the values f ′′ain

(li) and f ′′ain
(ui) also into consideration, µi of (31)

can be obtained.
The computation of the Hessian of f̄ai j (ti , t j) of (30) is also simple. Let t̄ = ti − t j . Then

∂2 f̄ai j (ti , t j)

∂ti∂ti
= ∂2 f̄ai j (ti , t j)

∂t j∂t j
= f ′′ai j

(t̄),

∂2 f̄ai j (ti , t j)

∂ti∂t j
= ∂2 f̄ai j (ti , t j)

∂t j∂ti
= − f ′′ai j

(t̄)

and

∇2 f̄ai j (ti , t j) =
[

f ′′ai j
(t̄) − f ′′ai j

(t̄)
− f ′′ai j

(t̄) f ′′ai j
(t̄)

]
.

Let

µi j = min{ f ′′ai j
(t̄) | li j ≤ t̄ ≤ ui j }. (33)

Again, µi j can be obtained by solving a quartic polynomial equation. Then

(xi , x j)∇2 f̄ai j (ti , t j)

(
xi

x j

)
= f ′′ai j

(t̄)(xi − x j)
2

≥ µi j (xi − x j)
2 = (xi , x j)

[
µi j −µi j

−µi j µi j

](
xi

x j

) (34)

for all li j ≤ ti − t j ≤ ui j and for any reals xi and x j .

Proposition 3 Let Hi j be the (n − 1)× (n − 1) matrix having 1 in position (i, j) and zeros
in all other positions. Let

H =
n−1∑

i=1

µi Hii +
n−2∑

i=1

n−1∑

j=i+1

µi j (Hii + Hj j − Hi j − Hji). (35)

123

432 J Glob Optim (2008) 42:423–442

If H is positive semidefinite, then the objective function of (11) is convex over the feasible
set, (11) is a convex programming problem, thus, any local optimal solution of (11) is global
optimal, too. If H is positive definite, then the objective function of (11) is strictly convex
over the feasible set, (11) has a single local (thus global) optimal solution.

Proof It follows from (32) and (34) that for any (n − 1)-vector (x1, . . . , xn−1) and for any
feasible solution (t1, . . . , tn−1) of (11), we have

(x1, . . . , xn−1)∇2 F(t1, . . . , tn−1)(x1, . . . , xn−1)
T ≥ (x1, . . . , xn−1)H(x1, . . . , xn−1)

T .

If H is positive semidefinite, then

(x1, . . . , xn−1)H(x1, . . . , xn−1)
T ≥ 0,

hence

(x1, . . . , xn−1)∇2 F(t1, . . . , tn−1)(x1, . . . , xn−1)
T ≥ 0.

This means that ∇2 F(t1, . . . , tn−1) is positive semidefinite over the feasible set of (11), and
consequently, F is convex over the feasible set of (11). Since the feasible set of (11) is con-
vex, (11) is a convex programming problem. The statement for positive definite H follows
similarly.
�
Corollary 2 Consider the case when all li and li j are−∞, and all ui and ui j are∞ in (11),
i.e. the feasible set of (11) is R

n−1. Compute the values µi of (31) and µi j of (33) for this
case. If the matrix H in (35) is positive semidefinite, then the equivalent problems (1), (3),
(5), (6), (8), (10) and (11) can be solved by local search techniques starting from any feasible
solution.

4 A branch-and-bound method

In this section, we present a branch-and-bound method for solving (1). More precisely, the
equivalent form (5) is considered, and its search region is restricted by adding lower and
upper bound constraints on the variables. The bounds are computed, using (24), from the
objective function value γ of a feasible solution of (5). In this way, problem (11) with a
compact feasible set is obtained.

Problem (10) is equivalent to (11) and has a form of separable programming. This suggests,
immediately, to apply a rectangular branch-and-bound technique for solving (10). However,
(10) has n(n − 1)/2 variables, while (11) has only n − 1 variables. This is why we solve
(11) but, essentially, we adapt, for (11), the rectangular branch-and-bound method detailed
in Tuy (1998, Sects. 5.5–5.6).

The partition sets in the iterations of the branch-and-bound method have the same form
as the feasible set of (11), the starting partition set, i.e. a partition set M is of form

{(t1, . . . , tn−1) ∈ R
n−1 | li ≤ ti ≤ ui , i = 1, . . . , n − 1,

li j ≤ ti−t j ≤ ui j , i = 1, . . . , n − 2, j = i + 1, . . . , n − 1}.(36)

Clearly, the lower bounds li , li j and the upper bounds ui , ui j give an unambiguous description
of the partition set. The partition sets are always assumed being nonempty.

The restriction of (11) to a partition set M means the problem

min F(t1, . . . , tn−1)

s.t. (t1, . . . , tn−1) ∈ M,
(37)

123

J Glob Optim (2008) 42:423–442 433

which, similar to (11), may be a nonconvex problem due to the possible nonconvexity of F
in (26). According to the general branch-and-bound scheme, we have to determine a lower
bound on the optimal value of (37). This is done by constructing a suitable piecewise linear
convex underestimator for F over M , and by minimizing this underestimator over M . The
underestimator is obtained from piecewise linear convex underestimators of functions fain

and fai j appearing in (26).
Let a > 0 and consider the univariate function fa(t) over an interval [l, u] ⊂ R. First,

consider the case when fa(t) is convex over [l, u]. This happens when either (14), or (15)
holds and (in the latter case) for the two inflexion points t (1)

a < t (2)
a , we have either u ≤ t (1)

a

or t (2)
a ≤ l. Let l = τ1 < τ2 < · · · < τm = u be a finite partition of [l, u], and let

ga,l,u(t) = max
p=1,...,m

{ fa(τp)+ f
′
a(τp)(t − τp)}. (38)

Function ga,l,u(t) is piecewise linear and convex over [l, u], and

ga,l,u(t) ≤ fa(t) for all t ∈ [l, u], (39)

ga,l,u(l) = fa(l), ga,l,u(u) = fa(u), (40)

|ga,l,u(t̄)− ga,l,u(t̂) |≤ La,l,u | t̄ − t̂ | for all t̄, t̂ ∈ [l, u], (41)

where

La,l,u = max {| f
′
a(t) | : t ∈ [l, u]}. (42)

Functions like (38) are used in separable convex programming, as well, see Burkard et al.
(1991).

Now, consider the case when fa(t) is concave over [l, u]. This happens when (15) holds
and we have t (1)

a ≤ l < u ≤ t (2)
a for the two inflexion points. Let

ga,l,u(t) = fa(l)+ fa(u)− fa(l)

u − l
(t − l). (43)

In the special case of u = l, let

ga,l,u(t) = fa(l).

Function ga,l,u(t) is linear, it is the convex envelop of fa(t) over [l, u], and it fulfills the
conditions (39)-(41), too.

Assume now that fa(t) is neither convex nor concave over [l, u]. Then, fa(t) consists of
a concave part and one or two convex parts over [l, u]. Consider, for the sake of simplicity,
the case of two convex parts. We have then l < t (1)

a < t (2)
a < u, fa(t) is convex over [l, t (1)

a]
and [t (2)

a , u], and concave over [t (1)
a , t (2)

a]. In the same way as shown above, construct the
convex envelop g

a,t (1)
a ,t (2)

a
(t) of fa(t) over [t (1)

a , t (2)
a] by (43), and piecewise linear convex

underestimators g
a,l,t (1)

a
(t) and g

a,t (2)
a ,u

(t) for fa(t) over [l, t (1)
a] and [t (2)

a , u] by (38), respec-
tively. If fa(t) consists of only a convex and a concave part over [l, u], then only the convex
envelop of the concave part and a piecewise linear convex underestimator of the convex part
are constructed. Thereafter, consider the piecewise linear function over [l, u] obtained by
putting together these two or three piecewise linear convex parts. The function constructed
in this way is a nonconvex piecewise linear underestimator of fa(t) over [l, u]. Let ga,l,u(t)
denote the convex envelop of this nonconvex function over [l, u]. Function ga,l,u(t) is piece-
wise linear and convex over [l, u], and it is easy to be constructed, since its breaking points

123

434 J Glob Optim (2008) 42:423–442

are a subset of those of the nonconvex function. It is also easy to see that ga,l,u(t) fulfills
(39)–(41).

We mention that if fa(t) is not concave over [l, u], ga,l,u(t) is not unambiguously deter-
mined. It depends on the number and the positions of the τp’s used in (38). Obviously, if the
τp’s constitute an equidistant grid and their number tends to∞, then the functions ga,l,u(t)
converge to the convex envelop of fa(t) over [l, u].

From the piecewise linear convex underestimators of the univariate functions in (26), we
put together a piecewise linear convex underestimator of F over the partition set M . Let

G M (t1, . . . , tn−1) =
n−1∑

i=1

gain ,li ,ui (ti)+
n−2∑

i=1

n−1∑

j=i+1

gai j ,li j ,ui j (ti − t j). (44)

Then G M (t1, . . . , tn−1) ≤ F(t1, . . . , tn−1) for all (t1, . . . , tn−1) ∈ M . Consequently, the
optimal value of

min G M (t1, . . . , tn−1)

s.t. (t1, . . . , tn−1) ∈ M
(45)

is a lower bound of the optimal value of (37). Problem (45) can be reformulated as a lin-
ear programming problem. The univariate piecewise linear convex functions in (44) can be
written as

gain ,li ,ui (t) = max
p=1,...,min

{αinpt + δinp}, i = 1, . . . , n − 1,

gai j ,li j ,ui j (t) = max
p=1,...,mi j

{αi j pt + δi j p}, i = 1, . . . , n − 2, j = i + 1, . . . , n − 1.
(46)

If the univariate function fain ,li ,ui (or fai j ,li j ,ui j) is convex or concave over [li , ui] (or
[li j , ui j]), then (38) and (43) yield the forms (46) directly. In the convex case min (or mi j)

is the number of the points τp , in the concave case min (or mi j) equals to 1. If the uni-
variate function is neither convex nor concave, then min (or mi j) depends on ain, li , ui (or
ai j , li j , ui j) as well as on the number and positions of the τp’s used at the convex part(s)
written in the form of (38).

Then, (45) is equivalent to the linear programming problem

min
n−1∑

i=1

zi +
n−2∑

i=1

n−1∑

j=i+1

zi j

s.t. αinpti + δinp − zi ≤ 0, p = 1, . . . , min, i = 1, . . . , n − 1, (47)

αi j p(ti − t j)+ δi j p − zi j ≤ 0, p = 1, . . . , mi j , i = 1, . . . , n − 2,

j = i + 1, . . . , n − 1,

li ≤ ti ≤ ui , i = 1, . . . , n − 1,

li j ≤ ti−t j ≤ ui j , i = 1, . . . , n − 2, j = i + 1, . . . , n − 1,

where zi , i = 1, . . . , n − 1, and zi j , i = 1, . . . , n − 2, j = i + 1, . . . , n − 1, are additional
variables.

For a partition set M , let β(M) and ω(M) denote the optimal value and an optimal solu-
tion point of (45), respectively. Clearly, β(M) is also the optimal value of (47), and the
(n − 1)-vector ω(M) is the (t1, . . . , tn−1) part of an optimal solution of (47).

If G M (ω(M)) = F(ω(M)), then we have found an optimal solution of (37), consequently,
the partition set M needs not to be subdivided in a further step of the branch-and-bound

123

J Glob Optim (2008) 42:423–442 435

method. Otherwise, we have

G M (ω(M)) < F(ω(M)). (48)

In this case M may be selected for subdivision (branching) in a further step. The ω-subdivision
strategy, which is effective in rectangular algorithms, will be adapted for this purpose.

It follows from (48) that there exists at least one univariate function from the right-
hand-side of (26) such that the gap between the function and its piecewise linear convex
underestimator is positive at ω(M). We determine the function with the maximal gap, and
use it at the ω-subdivision. Let

hin = fain (ωi (M))− gain ,li ,ui (ωi (M)), i = 1, . . . , n − 1,

hi j = fai j (ωi (M)− ω j (M))− gai j ,li j ,ui j (ωi (M)− ω j (M)),

i = 1, . . . , n − 2, j = i + 1, . . . , n − 1,

(i0, j0) ∈ arg max {hi j | i = 1, . . . , n − 1, j = i + 1, . . . , n},
v =

{
ωi0(M), for j0 = n,

ωi0(M)− ω j0(M), for j0 < n.

(49)

From (48), we have

hi0 j0 > 0. (50)

Also, it follows from (50) and the property (40) of the univariate piecewise linear convex
underestimators that

li0 < v < ui0 for j0 = n,

li0 j0 < v < ui0 j0 for j0 < n.

Then, for j0 = n, let

M (1) = {(t1, . . . , tn−1) ∈ M | ti0 ≤ v},
M (2) = {(t1, . . . , tn−1) ∈ M | v ≤ ti0}, (51)

and for j0 < n, let

M (1) = {(t1, . . . , tn−1) ∈ M | ti0 − t j0 ≤ v},
M (2) = {(t1, . . . , tn−1) ∈ M | v ≤ ti0 − t j0}. (52)

We will refer the partition (51)-(52) as a partition via (v, i0, j0).
The sets M (1) and M (2) are nonempty partition sets of form as that in (36), as well. They

are created from M by modifying the lower or upper bound on ti0 or ti0 − t j0 . This reduces
the range of the possible values of ti0 or ti0 − t j0 over M . The reduction of the range of ti0 or
ti0 − t j0 may cause the reduction of the possible range of other ti0 − t j or ti − t j0 , and this
may cause further reductions, and so on. We show an easy way how the tight ranges can be
determined.

For a partition set M of form as in (36), let

l̄i = min {ti | (t1, . . . , tn−1) ∈ M}, i = 1, . . . , n − 1,

ūi = max {ti | (t1, . . . , tn−1) ∈ M}, i = 1, . . . , n − 1,

l̄i j = min {ti − t j | (t1, . . . , tn−1) ∈ M}, i = 1, . . . , n − 2, j = i + 1, . . . , n − 1,

ūi j = max {ti − t j | (t1, . . . , tn−1) ∈ M}, i = 1, . . . , n − 2, j = i + 1, . . . , n − 1.

(53)

The values l̄i , ūi and l̄i j , ūi j are the tight bounds on ti and ti − t j , respectively, over M .
Obviously,

li ≤ l̄i ≤ ūi ≤ ui , i = 1, . . . , n − 1,

li j ≤ l̄i j ≤ ūi j ≤ ui j , i = 1, . . . , n − 2, j = i + 1, . . . , n − 1.

123

436 J Glob Optim (2008) 42:423–442

Let

M̄ = {(t1, . . . , tn−1) ∈ R
n−1 | l̄i ≤ ti ≤ ūi , i = 1, . . . , n − 1,

l̄i j ≤ ti−t j ≤ ūi j , i = 1, . . . , n − 2, j = i + 1, . . . , n − 1}.

Clearly, M̄ = M . This means that by changing the bounds of M to the tight bounds, the set
itself does not change. Applying tight bounds on the variables is, however, very advantageous
when a lower bound is to be computed on the optimal value of problem (37). It is easy to
see that the piecewise linear convex underestimators ga,l,u may give better approximations
if the bounds l and u are tight.

Range reduction and the computation of bounds as tight as possible are very useful tools
in the branch-and-bound methods of global optimization, and several techniques have been
developed for this purpose, see Tawarmalani and Sahinidis (2002). In principle, linear pro-
gramming problems should be solved to obtain the bounds in (53). However, due to the
special structure of the partition sets, the values of (53) can be obtained by solving a shortest
path problem in a graph.

Let G = [N , A] denote a directed graph, where N is the set of nodes and A is the set of
arcs. Let N = {1, . . . , n} and A = {(i, j) | i ∈ N , j ∈ N , i �= j}. A weight ci j is associated
with each arc:

ci j =

⎧
⎪⎪⎨

⎪⎪⎩

ui j , for i < j < n,

−l j i , for j < i < n,

ui , for i < j = n,

−l j , for j < i = n.

(54)

Note that ci j may be nonnegative.

Proposition 4 Consider the graph G = [N , A]with weights of arcs as defined in (54). Then,
G does not contain negative-weight cycle. Furthermore, for any i1, j1 ∈ N , let di1 j1 denote
the weight of the shortest path from i1 to j1. Then, for the tight bounds in (53), we have

l̄i = −dni , i = 1, . . . , n − 1,

ūi = din, i = 1, . . . , n − 1,

l̄i j = −d ji , i = 1, . . . , n − 2, j = i + 1, . . . , n − 1,

ūi j = di j , i = 1, . . . , n − 2, j = i + 1, . . . , n − 1.

(55)

Proof Consider, as a primal problem, the combinatorial problem of finding the shortest path
in G from i1 ∈ N to j1 ∈ N . The dual of the problem can be written as the linear program

max yi1 − y j1
s.t. yi − y j ≤ ci j for all (i, j) ∈ A,

(56)

see. e.g., Papadimitriou and Steiglitz (1982). Rearranging the constraints of (56), and taking
(54) also into consideration, we obtain

max yi1 − y j1
s.t. yi − y j ≤ ui j , i = 1, . . . , n − 2, j = i + 1, . . . , n − 1,

y j − yi ≤ −li j , i = 1, . . . , n − 2, j = i + 1, . . . , n − 1,

yi − yn ≤ ui , i = 1, . . . , n − 1,

yn − y j ≤ −l j , j = 1, . . . , n − 1.

(57)

123

J Glob Optim (2008) 42:423–442 437

It is easy to see that the value of one of the variables can arbitrarily be chosen in (57), so let
yn = 0. Then, (57) can be reformulated as

max yi1 − y j1
s.t. li ≤ yi ≤ ui , i = 1, . . . , n − 1,

li j ≤ yi − y j ≤ ui j , i = 1, . . . , n − 2, j = i + 1, . . . , n − 1,

(58)

where, in the case of i1 = n or j1 = n, yn is left out from the objective function.
Note that the feasible set of (58) is just the partition set M . Since M �= ∅, (58), and

thus (56) as the dual of the shortest path problem, have feasible solution. Consequently, the
optimal value of the primal problem is finite for any i1 ∈ N and j1 ∈ N . This also means
that G does not contain negative-weight cycle.

By the duality theorem, the optimal value of problem (58) is di1 j1 . Let i1 < j1 < n. Then,
from (53) and (58), we get ūi1 j1 = di1 j1 . For j1 < i1 < n, the maximization of yi1 − y j1 in
(58) can be replaced by the minimization of y j1− yi1 . Again, from (53), we get l̄ j1i1 = −di1 j1 .
The remainder of (55) can be proved in a similar way.
�
Corollary 3 Since G does not contain negative-weight cycle, the weights of the shortest
paths between all pairs of nodes can be determined by the Floyd-Warshall algorithm in
O(n3) steps, see, e.g., Papadimitriou and Steiglitz (1982). Consequently, all tight bounds in
(53) can also be determined in O(n3) steps.

Now, we present the algorithm proposed for solving problem (5).

Algorithm 1
Select an ε ≥ 0.
Initialization. Let t̄0 be the best feasible solution available for (5), and let γ0 = F(t̄0).
With γ = γ0, determine the lower and upper bounds as the solutions of (24), and construct
an initial partition set M0 of form (36). Let P1 = S1 = {M0}. Set k = 1.

Step 1. For each M ∈ Pk construct a piecewise linear convex underestimator G M according
to (44) and (46), and solve (45) via solving the equivalent linear programming prob-
lem (47). Let β(M) and ω(M) be the optimal value and an optimal solution point of
(45), respectively.

Step 2. Update the incumbent by setting t̄ k equal to the best among t̄ k−1 and all ω(M),
M ∈ Pk . Let γk = F(t̄ k).

Step 3. Delete every M ∈ Sk such that β(M) ≥ γk−ε. Let Rk be the collection of remaining
members of Sk .

Step 4. If Rk = ∅, then terminate: t̄ k is a global ε-optimal solution of (5).
Step 5. Choose Mk ∈ arg min{β(M) | M ∈ Rk}. Subdivide Mk by a partition via (v, i0, j0)

according to (49)-(52). Let Pk+1 be the partition of Mk .
Step 6. For each partition set M ∈ Pk+1, determine the tight bounds according to (55), and

replace the bounds by the tight bounds.
Step 7. Set Sk+1 = (Rk \ {Mk}) ∪ Pk+1. Set k ← k + 1 and go back to Step 1.

Proposition 5 Algorithm 1 can make an infinite number of iterations only if ε = 0 and in
this case every accumulation point of the sequence {t̄ k} is a global optimal solution of (5).

Proof If Algorithm 1 is infinite, then there exists at least one infinite sequence of sets Mkν , ν =
1, 2, . . . , such that for ν > 1 each Mkν is a child of its predecessor Mkν−1 , i.e. Mkν is obtained
from Mkν−1 directly by a subdivision. Infinite sequences of partition sets with this property are

123

438 J Glob Optim (2008) 42:423–442

called filters. For a general class of branch-and-bound algorithms, Tuy (1998, Sections 5.5-
5.6) proved that if every filter {Mk, k ∈ K } contains an infinite nested sequence {Mk, k ∈ K1}
such that

γk − β(Mk)→ 0 (k →∞, k ∈ K1), (59)

then the algorithm is convergent. Since Algorithm 1 is a special case of the general class of
branch-and-bound algorithms being in the focus of Tuy (1998, Sections 5.5-5.6), we shall
prove (59) and refer to Tuy (1998).

Consider a filter {Mk, k ∈ K }. It is clear that there exist 1 ≤ i1 < j1 ≤ n, s ∈ {1, 2}
and an infinite subset K1 ⊂ K such that every Mk, k ∈ K1 is subdivided by a partition via
(vk, i1, j1) and its child in the filter {Mk, k ∈ K } has the form M (s) of (51) or (52). Assume,
without loss of generality, that i1 = 1, j1 = n and s = 1. Then, for any k1, k2 ∈ K1 for
which k1 < k2, we get

lk1
1 ≤ lk2

1 ≤ uk2
1 ≤ ω1(Mk1) < uk1

1 , (60)

where lk
1 and uk

1 denote the tight bounds of t1 in the partition set Mk . From (60), it follows
that there exist l̂1 and û1 such that

lk
1 → l̂1, uk

1 → û1, ω1(Mk)→ û1 (k →∞, k ∈ K1). (61)

To prove (59), we show first that

fa1n (ω1(Mk))− ga1n ,lk
1 ,uk

1
(ω1(Mk))→ 0 (k →∞, k ∈ K1). (62)

Clearly,

fa1n (ω1(Mk))− ga1n ,lk
1 ,uk

1
(ω1(Mk))

= (fa1n (ω1(Mk))− fa1n (u
k
1))+ (fa1n (u

k
1)− ga1n ,lk

1 ,uk
1
(ω1(Mk)).

(63)

From (61) and the continuity of fa1 , we get

fa1n (ω1(Mk))− fa1n (u
k
1)→ 0 (k →∞, k ∈ K1). (64)

From (40), it follows that

fa1n (u
k
1) = ga1n ,lk

1 ,uk
1
(uk

1), (65)

and from (41) and (65),

| fa1n (u
k
1)− ga1n ,lk

1 ,uk
1
(ω1(Mk)) |≤ La1n ,lk

1 ,uk
1
|uk

1 − ω1(Mk) |,
where the Lipschitz constant L is defined in (42). Since for any k1, k2 ∈ K1 and k1 < k2 ∈ K1,
we have

L
a1n ,l

k1
1 ,u

k1
1
≥ L

a1n ,l
k2
1 ,u

k2
1
≥ 0,

as well as uk
1 − ω1(Mk)→ 0 (k →∞, k ∈ K1), it follows that

fa1n (u
k
1)− ga1n ,lk

1 ,uk
1
(ω1(Mk))→ 0 (k →∞, k ∈ K1). (66)

From (63), (64), and (66), we obtain (62). Then, (62) entails

F(ω(Mk))− G Mk (ω(Mk))→ 0 (k →∞, k ∈ K1),

and taking F(ω(Mk)) ≥ γk ≥ β(Mk) = G Mk (ω(Mk)) also into account, (59) follows
immediately. This completes the proof.
�

123

J Glob Optim (2008) 42:423–442 439

Corollary 4 Let

w̄k
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

et̄k
i /(1+

n−1∑
j=1

et̄k
j), for i = 1, . . . , n − 1,

1/(1+
n−1∑
j=1

et̄k
j), for i = n.

Then, if Algorithm 1 is infinite, every accumulation point of the sequence {w̄k} is a global
optimal solution of (1). Similarly, if t̄ k is a global ε-optimal solution of (5), so is w̄k for (1).

Algorithm 1 differs from the methods published earlier for finding the global optimum
of problem (1). Bozóki (2003, 2006), and Bozóki and Lewis (2005) wrote the first-order
necessary condition for (1) in the form of a multivariate polynomial system, and applied
resultant and homothopy methods for finding the roots. This approach is capable for finding
all local optima of (1). This needs, however, more computational efforts in comparison to
Algorithm 1 that finds only the global optimal solutions of problem (1).

Carrizosa and Messine (2007) showed that standard interval branch-and-bound algorithms
can be directly used for solving problem (1) and even more general problems, as well. They
consider the general problem

min g
(
(|ai j − wi

w j
|)n

i, j=1

)

s.t. wi > 0, i = 1, . . . , n,
(67)

where g is a monotonic norm in the nonnegative orthant R
n×n+ . Clearly, if g is the l2 norm,

then (67) is equivalent to problem (1). Carrizosa and Messine (2007) extended (67) also for
the case when the scalar values ai j are replaced by intervals. In the case of problem (1), the
standard interval branch-and-bound algorithms do not exploit the computational advantages
derived from the special structure of problem (1) as detailed in the present paper. This meth-
odological advantage of Algorithm 1 over the standard interval techniques is valid only for
problem (1). For monotonic norms g different from l2 as well as for the case when intervals
are given instead of scalar values ai j , a branch-and-bound method similar to Algorithm 1
may be competitive with the standard interval techniques only if special properties similar
to those in this paper can be found and exploited.

5 Computational experiments

Algorithm 1 has been tested on randomly generated problems. The algorithm was coded in
C and run on an Intel Pentium 4 PC (3.2 GHz, 2 GB of RAM). The linear programming prob-
lems (47) were solved by the package BPMPD developed by Mészáros (1999). The unique
optimal solution of the Logarithmic Least Squares Method was used as a starting feasible
solution t̄0 since it can directly be obtained as the geometric mean of the rows of A. The
tolerance ε = 10−3 was used in the course of the computational experiments.

We applied the following strategy to construct piecewise linear convex underestimators.
If at least one of the univariate functions of (26) was nonconvex over the partition set, then
the convex univariate functions fa(t) were approximated by (38) using m = 2 or m = 3.
The endpoints of the interval were chosen as τ ’s, in addition, if log a was in the interval, then
in order to assure the nonnegativity of the underestimation, log a was used as a τ , too. If all
of the univariate functions were convex over the partition set, an equidistant grid of τ ’s with
m = 20 was used for each function. By the latter approximation, an iteration of the algorithm

123

440 J Glob Optim (2008) 42:423–442

Table 1 Randomly generated test problems

n p Average Minimal Maximal

Time (s) Subdivisions Time (s) Subdivisions Time (s) Subdivisions

5 20 0.05 3.50 0.01 0 0.25 19

5 40 0.27 19.90 0.06 4 0.66 48

5 60 0.29 21.40 0.05 3 0.67 47

5 80 0.38 29.75 0.17 13 0.61 51

6 20 0.43 24.25 0.03 1 0.94 52

6 40 0.86 46.70 0.42 21 2.39 124

6 60 1.17 64.70 0.56 32 2.36 131

6 80 1.35 79.65 0.67 38 2.45 148

7 20 2.86 118.45 0.75 33 5.86 234

7 40 3.16 126.15 1.22 49 6.44 276

7 60 3.47 147.85 1.52 62 6.63 286

7 80 5.34 241.45 2.42 108 10.17 491

8 20 8.60 268.45 3.16 97 16.75 527

8 40 9.72 302.70 2.75 88 25.09 764

8 60 11.38 374.80 5.70 187 20.16 666

8 80 24.39 880.90 3.94 127 66.38 2761

9 20 32.02 772.70 7.13 179 72.31 1782

9 40 23.65 586.00 10.36 257 93.30 2224

9 60 32.78 849.85 11.19 274 82.17 2264

9 80 58.65 1650.65 13.23 350 218.95 6537

10 20 99.28 1893.45 29.92 568 249.02 4733

10 40 78.92 1567.55 23.25 466 341.34 6971

10 60 91.51 1879.35 21.25 445 197.78 4043

10 80 220.95 4856.45 98.02 2069 539.13 12078

proposed by Burkard et al. (1991) for solving separable convex programming problems was
performed. Another approach can be to find the minimum of the convex function over the
partition set directly by using an iterative local optimization technique. It may however turn
out that the minimal value of the convex function over the partition set is not better than
the objective function value of the incumbent, thus the partition set is deleted, making the
additional computational efforts wasted.

The randomly generated test problems were created in a way similar as Golany and
Kress (1993), and Carrizosa and Messine (2007) did. For a fixed n, a weight vector w̄ =
(w̄1, . . . , w̄n)T was generated randomly, where each w̄i was selected independently and uni-
formly from the set {1, . . . , 9}. The entries of the consistent matrix of ratios w̄i/w̄ j were
then perturbated by using a parameter p (given in %) and a perturbation factor ξi j randomly
generated from a uniform distribution in the interval [−1, 1]. Then, the entries of matrix A
were obtained as

ai j =
⎧
⎨

⎩

w̄i
w̄ j

(1+ p
100 ξi j), for i < j,

1, for i = j,
1/a ji , for i > j.

123

J Glob Optim (2008) 42:423–442 441

The parameter p is referred as ’degree of inconsistency’ in Golany and Kress (1993). Clearly,
a greater value of p allows a greater possible deviation from the value of the given entry of
the consistent matrix.

Table 1 summarizes the computational experiments on randomly generated test problems.
The test problems were generated for n = 5, . . . , 10 and p = 20, 40, 60, 80. For each cat-
egory, 20 problems were generated and solved. In Table 1, the average, the minimal and
the maximal values of the running times and the numbers of subdivisions are listed in each
category.

We can observe the usual phenomenon of the branch-and-bound methods, namely, if n
increases, then the computational efforts needed to solve the problems increase more or less
exponentially. Also, except for some categories, considering a fixed n, a greater value of p
entails greater computational efforts. A more precise and detailed analysis of the relation of
the consistency ratio (Saaty 1980) and other measures of inconsistency to the convexity and
nonconvexity properties of the problems considered in the paper will be the topic of further
research.

Acknowledgements The author would like to thank the anonymous referees for their helpful remarks and
suggestions. This research was supported, in part, by the Hungarian Scientific Research Fund, Grant Nos.
OTKA-T043276, T043241 and K60480.

References

Blankmeyer, E.: Approaches to consistency adjustments. J. Optim. Theory Appl. 54, 479–488 (1987)
Bozóki, S.: A method for solving the LSM problems of small size in the AHP. Cent. Eur. J. Oper. Res. 11, 17–

33 (2003)
Bozóki, S.: Weights from the least squares approximation of pairwise comparison matrices (in Hungarian).

Alkalmazott Matematikai Lapok. 23, 121–137 (2006)
Bozóki, S.: Weights from pairwise comparisons and evaluation by using utility functions in multi-attribute

decision problems. Ph.D. Dissertation, Corvinus University of Budapest, Budapest (2006)
Bozóki, S., Lewis, R.H.: Solving the Least Squares Method problem in the AHP for 3 × 3 and 4 × 4 matri-

ces. Cent. Eur. J. Oper. Res. 13, 255–270 (2005)
Bryson, N.: A goal programming method for generating priority vectors. J. Oper. Res. Soc. 46, 641–648 (1995)
Burkard, R.E., Hamacher, H.W., Rote, G.: Sandwich approximation of univariate convex functions with an

application to separable convex programming. Nav. Res. Log. 38, 911–924 (1991)
Carrizosa, E.: Deriving weights in multiple-criteria decision making with support vector

machines. TOP 14, 399–424 (2006)
Carrizosa, E., Messine, F.: An exact global optimization method for deriving weights from pairwise comparison

matrices. J. Glob. Optimi. 38, 237–247 (2007)
Choo, E.U., Wedley, W.C.: A common framework for deriving preference values from pairwise comparison

matrices. Comp. Oper. Res. 31, 893–908 (2004)
Chu, M.T.: On the optimal consistent approximation to pairwise comparison matrices. Linear Algebra

Appl. 272, 155–168 (1997)
Chu, A.T.W., Kalaba, R.E., Spingarn, K.: A comparison of two methods for determining the weight belonging

to fuzzy sets. J. Optim. Theory Appl. 4, 531–538 (1979)
Crawford, G., Williams, C.: A note on the analysis of subjective judgment matrices. J. Math. Psychol. 29,

387–405 (1985)
De Jong, P.: A statistical approach to Saaty’s scaling method for priorities. J. Math. Psychol. 28, 467–478 (1984)
Farkas, A.: Cardinal Measurement of Consumer’s Preferences. Ph.D. Dissertation, Budapest University of

Technology and Economics, Budapest (2004)
Farkas, A., Rózsa, P.: Data perturbations of matrices of pairwise comparisons. Ann. Oper. Res. 101,

401–425 (2001)
Farkas, A., Rózsa, P.: On the non-uniqueness of the solution to the least-squares optimization of pairwise

comparison matrices, Acta Polytech. Hung. J. Appl. Sci. at Budapest Tech Hungary 1, 1–20 (2004)

123

442 J Glob Optim (2008) 42:423–442

Farkas, A., Lancaster, P., Rózsa, P.: Consistency adjustment for pairwise comparison matrices. Numerical
Linear Algebra Appl. 10, 689–700 (2003)

Gass, S.I., Rapcsák, T.: Singular value decomposition in AHP. Eur. J. Oper. Res. 154, 573–584 (2004)
Golany, B., Kress, M.: A multicriteria evaluation method for obtaining weights from ratio-scale matrices. Eur.

J. Oper. Res. 69, 210–220 (1993)
Jensen, R.E.: Comparison of eigenvector, least squares, chi squares and logarithmic least squares methods of

scaling a reciprocal matrix. Working paper 153, Trinity University (1983)
Jensen, R.E.: Alternative scaling method for priorities in hierarchical structures. J. Math. Psychol. 28,

317–332 (1984)
Kurosh, A.G.: Higher Algebra. Mir Publishers, Moscow (1972)
Mészáros, Cs.: BPMPD version 2.21. Optimization Methods and Software. 11-12, CD Supplement, Software

section (1999) (http://www.sztaki.hu/~meszaros/bpmpd/)
Mikhailov, L.: A fuzzy programming method for deriving priorities in the analytic hiarerchy process. J. Oper.

Res. Soc. 51, 341–349 (2000)
Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Pren-tice-

Hall, Englewood Cliffs (1982)
Rapcsák, T.: Convexification of functions by nonlinear coordinate transformations. In: Giannessi, F., Pardalos,

P., Rapcsák, T. (eds.) Optimization Theory, pp. 179–189. Kluwer (2001)
Saaty, T.L.: A scaling method for priorities in hierarchical structures. J. Math. Psychol. 15, 234–281 (1977)
Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)
Tawarmalani, M, Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-integer

Nonlinear Programming. Kluwer, Dordrecht (2002)
Tuy, H.: Convex Analysis and Global Optimization. Kluwer, Dordrecht (1998)

123

http://www.sztaki.hu/~meszaros/bpmpd/

	A method for approximating pairwise comparison matrices by consistent matrices
	Abstract
	1 Introduction
	2 Transforming the Least Squares problem into a separable programming form
	3 Sufficient conditions for the global optimality of a local optimal solution
	4 A branch-and-bound method
	5 Computational experiments
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

